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ABSTRACT

Associative memories have exiremusy uoctul Somaplites ¢
the weems” & are eXuc=sly ex, - wa, Onew i w0 wenbag the
high hardware cost is to use an associative memory which is smaller
than <ne data base, and process the data by pages, By using a smaller
memory the haruware costs are thus reduced, Some operations can
be performed quite efficiently on an associative memory smaller than
the data base, (Fractional-Size Associative Memory) while others cannot,
In this report a class of operations which are performed efficiently on

a Fractional-Size Associative Memory is defined,




1.0 Introdge. 4

In the study and design of large scale systems, problems of
data management and data processing are often encountered. One
area of such problems concerns the selection of efficient hardware
for a system, given that a known set of operations are to be per-
formed on the selected hardware. This is, of course, ong ol the
primary goals of a systems designer. In order to select the proper
hardware for a system, however, a designer must know for which
type of operations each hardware component is best suited. In this
report the problem of determining the suitability of operztions is
considered for the particular case of associative memories.

In the period of time since associative memories were first
designed and built, numerous studies [e.g., 1-7] have been made to
determine which operations are well suited to their use. Although
these studies have shown associative memories {2 be powerful and
versatile, the application of associative memories has been quite
limited, due to their high cost. Since the cost of these memories is
proportional to the number of bits, it is logical to use as small a
memory as will provide adequate performance. The issue is, there-
fore, to determine how small a memory can be used and still obtain
satisfactory performance. Intuitively, it seems clear that the size
memery required would depend on the operation to be performed

and the size of the data base. In particular, one operation might
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perform well on a memory which is smaller than the data base, while
a second operation might perform very poorly under these conditions.
It would therefore be advantageous to know what are the characteristics
of the first operation which allow it to perform well in a situation which
is totally unsuited for the second operation. This is the issue which
is discussed in the remainder of this report.

The goal here will be to determine which operations are well
suited to an associative memory which can hold only some fraction
of the data base required for those operations. The reason for this
is quite siinple. In many instances the cost of an associative memory
which is large enough to contain the entire data base is prohibitively
high. If, however, an associative memory, which can hold some
fraction, a, of this datz base, can be employed without paying too
high a cost in increasec processing time, then the capabilities of the
associative memory may be available within the price range of the
user. (In the next section an example will further clarify this idea.)
As will be shown later in this report, certain operations are suitable
to such a reduced associative memory size while others are nct. To
determ.re which operations are suitabie the following steps are taken
in this report.

First, the concept of associative memory is briefly reviewed and
the assumptions concerning the data processing environment, which are
the basis of the analysis in this report, are presented. Second, a

precise meaning is given to the term '"'operation', as used in this




report. Next, a definition of what is meant by an operation being
suitable for a full-size associative memory is presented. With this
definition as a basis, the characterization of operations suitable for
associative memories which must process data bases larger than
themselves (Fractional-Size Associative Memory) is begun. One
conclusion reached i: ot the basic associative search capabilities
(instructions) of an associative memory must fit the characterization
chosen. The final characterization is formalized as the definition of

a class of operations which are suitable for Fractional-Size Associative

Memories. Finally, examples of members of this class are discussed.

1.1 Motivational Example

In this section a situation is examined in which a Fractional-Size
Associative Memory can be used efficiently. For the sake of brevity
and clarity the example will be kept as simple as possible.

The sitvation is the following. A large data base is frequently
queried as to the contents of that data base. To answer these queries
a computer is used. However, the data base is so large that a random
access memory large enough to store the entire data base is too
expensive. Also, other demands made upon the computing system
would force the data base to be remove 1 from core periodically. It
has been determined that the computer system, with only the random

accer s capability of a conventional memory, could not keep up with
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the demands on the system. The queries to tihe data base are of the
type that an associative memoa.y resolves quite efficiently. For
instance, a typical query would be to find all words in the data bas¢
whose values lie within a given range of values. A full size asso-
ciative memory can simultaneously, for all data in the memory,
ascertain which data meet this conditionl. With a random access
mem: ry only one word may be checked at a time. Since the queries
are suitable for the associative memory the queries could easily be
processed if the memory were large enough to 1.01d the entire data.
This cannot be done since the cost would be far too great, much
greater than for the same size conventional memory. To summarize,
the situation is as depicted in Figure 1. Time and cost2 constraints
are present as indicated by the horizontal and vertical dotted lines,
respectively. (The size of the data base is assuraed to be fixed.)
The crosshatched area indicates the region in which the system must
operate in order that its perlormance be acceptable. The circled
dots indicate the time-cost coordinates of the associative and con-

ventional memories which are large enough to hold the entire data

1See Appendix A for an exarple of how this query could be
resolved by an associative memory.

2Although cost is a criterion in this example it is not used in
the more general problem of interest in the remainder of this report.
Reasons for this are discussed in Section 4.
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base. The conventional memory meets neither cf the two constraints,
while the associative memory meets only the time constraint.

Since the associative memory does meet the time constraint,
one way of solving this problem is to reduce the cost of the asso-
ciative memory to an acceptable level by reducing its size. If this
smaller associative memory, which meets the cost constraint, can
still meet the time constraint, then a solution has been found. To
show that this can be done in some instances, Appendix A includes
programs which implement the example operation described above,
usiilg a conventional memory and an associative memory. These are
analyzed to determine how much time the associative memory will
require to perform the operation, as a function of the memory size.
The results are presented in Figure 2. As can be seen there is,
indeed, a range of sizes for the associative memory such that both
constraints are met, as evidenced by the part of the curve which
passes through the cross-hatched area. Thus, for the operation
described above, it is clear that a Fractional-Size Associative
Memory can be used efficiently. Indeed, it constitutes the only
solution to the problem, as presented.

This example leads into the question of how to determine when
Fractional-Size Associative Memories can be ased efficiently. For

some operations such a memory can be used efficiently while for
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others it cannot. For example, ordering a list on some parameter
is somewhat awkward rn a smaller memc;y, i.e., one which cannot
hold all the data. For this reason it would be desirable to know what
characteristics can guarantee that . given operation is suitable for
a Fractional-Size Associative Memory. To attack the problem of
finding these characteristics some groundwork must be prepared.
In particular, precise notions of suitability and operation must be
defined, and the problem to be discussed must be posed in much
more gpecific terms. In the next sections this groundwork is com-
pleted. This includes a review of the concept of an associative
memory so as to avoid possible confusion on the part of the reader

when specific terms are used.
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2,0 The Associative:Memory System and Environment

2.1 The Basic Associative Memory

Since tho rest of this report will presume a certain familiarity

with associative memories a brie: .-a2view of the basic structure of an
. % .
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associative memory will now be presented.

In brief, any memory which has the capabmty to retrleve data

b iad v

by contents may be termed as associaiive memory. Techmcally, the

AR

term content-addressable is a more apt description of this type of
memory, but the term associative memory seem:: tv be commonly

accepted and will be used throughout this report.

YRyt AT,

The configuration which is usually considered minimal, :in tér'ms

of hardware, for an associative memory is shown in Figure 3. It consists

of a collection of storage elements which are grouped ‘into logical units
known as memory registers. These registers may be subdivided into -
4 fields. Also required are three types of registers known as comparand
register(s), mask register(s), and response register(s). These four
component types, along with cqntrol logic, allow the basic function of
content addressability to be performed. As an examplé of how these

components are used, suppose it is desired to determine which words1

have Field A equal to 100, The procedure would be first, set Field A

SN S L MG S SRR AT S TR I pers s, 7

- of the mask register to its ""ON'' condition (all other Fields are "OFF")

2.
hwreen s e

1The unit of information heid by one memory register is known
as a word,

R TR A,
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§_ to indicate a search is to be performed on Field A, only. Next, the

g value 100 is placed in Field A of the comparand register to signify

§ the value to be searched for. Then, the "EXACT MATCH" search

g instruction is executed and, afterwards, the response register indicates

k those words which meet the search criterion.

§ 2.2 Capabilities of Associative Memories

f Even though a memory system with the capability described
] above is a very powerful device, other capabilities are generally added
2 ? as well. Typical capabilities are the following [ 1,5] .
- % 1. EXACT MATCH - finds all words for which the bits indicated
t § by the mask match the corresponding bits in the comparand
,; § 2. MAX - finds the location of the maximum value in memory
g for those bits indicated by mask register
% 3. MiN - analogous to MAX
‘ E 4, LESS THAN - finds all words for which the bits indicated
-

by the mask have value less than the value of the
corresponding bits in the comparand

5. GREATER THAN - analogous to LESS THAN

6. LESS THAN OR EQUAL - same as LESS THAN but

indicates words with equal value as well

7. GREATER-THAN-OR-EQUAL - analogous to LESS THAN

OR EQUAL
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8. NEXT-HIGHER-THAN - finds word(s) having the smallest
value of indicated bits which is greater than the value
of those bits in the comparand
9. NEXT-LOWER-THAN - analogous to NEXT HIGHER THAN
10. BETWEEN COMPARANDS - finds those words for which the
value of the indicated bits is between the values of the
corresponding bits of two comparands (This operatio:i

requires two comparxzad registers)

2.3 The Associative Memory System Model

A great deal of variation exists among present and proposed
associative memory systems in terms of hardware available, instruction
set, and the configuration of the memory system. Therefore, it is
appropriate at this point to present the memory configuration and the
instruction set upon which the remainder of this report will be based.

The memory configuration is depicted in Figure 4. The arrows
between the various components indicate paths of data flow, The data
is passed among the memory levels by high speed, dedicated channels,
All data transfers, including those to and from the associative registers,
are parallel-by-bit, serial-by-word transfers. The buffer memory is
present to mask latency delays characteristic of disk, drum, and other
bulk storage. The goal is to anticipate requests for data by the asso-
ciative memory and have that data waiting in the buffer whe: it is needed.

The size of the buffer will not be discussed, but it will be assumed that
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the buffer is larger than the associative memory. The dotted channel
arrows going to the left indicate a data path to other components of the
computer system. These may include conventionai memory, I/0 units,

or other registers. T! s~ will be of no concern, except where specifically
mentioned later on, No particular length will be assumed for the asso-
ciative registers or the associative memory registers, except in specific
examples. It will be assumed, unless otherwise noted, that the respoase
register contains one bit for each word in the associative memory.

The instruction set i the associative memory will include five
basic search commands, plus commands to move data to and ‘rom the
associative memory, plus other "housekeeping' instructions.

The search instructions are the following

1, EXACT MATCH

2. MAX

3. MIN

4, LESS THAN

5. GREATER THAN
For each of these five instructions the words which do not satisfy the
search criteria are indicated at the completion of the instruction by the
correspondence bit of the response register being set to zero, The bits
corresponding to words which meet the search criterion are left
unchanged, Other instructions which are assumed to be part of the

instruction set are the following,
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LOAD - causes the specified register to be loaded from
the specified location (the register and the locaticn are
parameters of the instruction).

SET RESPOI™:i< - causes respeanse register to be set to
all ones cr all zeros, whichever is specified.
COMPLEMENT RESPONSE - causes each bit of response
register to be complemented.

COUNT RESPONDERS - causes a count of the number of
pits set to zero in the response register to be taken,
MOVE RESPONSE - causes those words for which the
corresponding bits in the response register are zero

to be written into the buffer memory or into some other
specified piace.

WRITE RESPONSE - causes a specified symbol to be
written into the set of bits designated by the mark register,
for all locations indicated by tlie response register.
LOAD RESPONSE - causes those locations indicated by

response register to be loaded from specified region.

For an operative system other instructions would be required,

in addition to the seven listed above. These instructi"s are presented

only to give some insight to the range of capabilities which is assumed

for the associative memory system in the remainder of this report.

They are not meant to be an exhaustive list,

Tt T e A Ok T T
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One bit of notation which will be used throughout the remainder
of this report is the symbol “a", This symbol will designate the size
of the associative m:mory relative to the size of the data base to be
processed (i.e., 0 < a < 1). For example, if the data base has 10,000

words and the associative memory can hold 100 words, then

- 100 _
= 0,000 -

Associative Mc mory.

a .01, This is the reason for the term Fractional-Size

3.0 Operations

Up to this point the term "operation' has been used on an intuitive
basis. The discussion in this section will provide a more precise
definition of the term in the context of this report.

An operation is an abstract concept which is similar to the concept
of "goal”. That is, an operation is a specification of a desired end
result with no specificafion of the manner in which the resut is to be
achieved. For example, "Find the maximum value of field A", is an
operation. The actual achievement of the goal, i.e. finding the maximum
value of field A, can be accomplishea in various manners, More formally,
an operation may be thought of as a mapping which maps data into
output,

Structurally these opuvrations may be viewed as having been
generated by a set of primiuve, or typiral, operations, For any given
system this set of typi:al operations corresponds to the instruction set

of that system. Operaticrs not included in these typical operations may
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be constructed by building an appropriate sequence of the typical operations.
For example, suppose the instruction set for some syster» >onsisted of
the two groups of instructions discussed in Section 2.3, and that it is
desired to perform the following cperation, "Of those words which have
(Field A) < 100 and (Field B) > 10, find those words for which (Field Q)=1."
This operation is not a member of the typical set of operaticns but it
could be constructed from the following sequence. (It is assumed, for
simplicity, that the data has already been loaded.)
1. LOAD Comparand® - loads test values into Fields A, B, and C.
2. LOAD Mask - sets Field A to "on" state, other fields to "off",
3. Set Response - puts all 1's in response sequence.
4, LESS THAN - finds words with (Field A) < 100 RESPONSE
bits for all others are set to zero,
5. LOAD Mask - sets Field B to "on" state, others to "off".
6. GREATER THAN - response bits for all words having
(Fielc B) > 10 are set to z2ro,
7. LOAD Mask - set Field C to "on" state, others to "off".
8. EQUAL TO - after this operation response bits still set to

one indicate those words which meet all three criteria.

1In practice, all LOAD :~mmands would require a specification
of where to load from, but th*., “s 2 act»il which is unimportant to the
discussion above.
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4.0 Suitability of Operations for Fractional-Size Associative Memories

The goal of this section is the development of the definition for
the Minimum Suitable Class of Operations. This definition will specify

sufficient conditions for an operation to be suitable for a Fractional-Size
Ausociative Memory. In other words, the Minimum Suitable Class will
be a subclass of those operations which are suitable for the Fractional-
Size Asscciative Memory. The first step toward this goal will be to
define suitability.

4.1 Suitability

The word "suitable" has, unfortunately, different intuitive meanings
to different people. To one person a1 operation which is suitable for an
associative memory is one which can be performed by that type of memory,
To someone else it may mean that the operation can be performed within
a specified time using the associative memory. To another person it
may mean that the operation can be performed more rapidly, or more
cheaply, or both in an associative memory as compared to a conventional
memory, Here suitability of an operation for an associative memory
will be defined relative to time to perform that operation using a
conventional memory. The definition will say nothing about the cost of
the ~ssociative memory, for two reasons, First, the money available
to spena on an associative memory is normally a constraint peculiar
to each lata processing system. Thus, an absolute bound on the cost

would be arbitrary and probably useless. Second, the ratio of the cost
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of an associative memory to the cost of a conventional memory depends

GO RR ey

Y Ry

on the technologies used to build each of them. Therefore, constraining
the cost of an associative memory relative to the cost of a conventional

memory wou.d likely prove to be of little value either.

) 4!:\!;:2( ‘u'.; ‘,"q‘ y " .i\;{ﬂ Er

E ! The definition will characterize suitability in terms of full size

IS

TIPNI x
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associative memories and full size conventional memories, i.e., memoiies

3 which are large enough to hold the entire data base.

Definition An operation, f, is suitable for a full size
associative memory A, if, for any implementation of f
on a conventional memory, C, an implementation of £

on A can be found which is faster,

Frasic

o ai2f, peeaks ‘-ﬁ;\u.“\‘ 3

In this definition an implementation is a program, The definition
says that f can be performed faster using A than is possible using C.

Note that this definition is for full size associative memories, It

RASTT vy

should be clear to the reader that operations which are suitable under

this definition may, if implemented in a Fractional-Size Associative

e

Memory, reyuire more processing time than if implemented in a
conventional memory, In general, this will depend upon the size of the

Fractional-Size Associative Memory and the nature of the operation,

e

X Since the size the Fractional-Size Associative Memory is normally limited

by economic considerations only the nature of operations will be considered
here,

¢ The goal, then, is to characterize the Minimum Suitable Class of

Operations as described above, The only question is where to start,

PRI

|5 R T




i
E>
-
b
B
4
2

W SNy o

20

One starting point is to consider what are the most essential, c: vasic,
capor’ L.es of associative memories, Clearly, it is the associative
seacch capabilities, such as MAX, EXACT MATCH, etc., These are

the capabilities which distinguish associative from conventional memories.
Any class of operations which are to be suitable to a Fractional-Size
Associative Memory should contain these capabilities. For this reason,
the nature of these operations will be studied as the basis of the
characterization of the Minimum Suitable Class of Operations. Recall
that in Section 2,3 five associative operations were listed, and it was
stated that these five could be combined to implement the capabilities

of almost any other set of associative search instructions,

4,2 Characterization of the Basic Associative Operations

The five associati-ve search operations listed in Section 2,3 are
repeated below for convenience.

1. EXACT MATCH

2. GREATER THAN

3. LESS THAN

4. MAX

5. MIN

The five operations corresponding to these instructions will
hereafter be referred to as the '"basic associative operations". For

example, the operation corresponding to EXACT MATCH is that mapping




-t | — o %

21

which maps the input data set to those members of the input data which
match some predetermined constant,

The first step in characterizing these operations will be to define
the range and domain of the mapoings. To do this some notation must
first be defined.

Notation

Tbe basic object of interest is the single word, or datum,

w = { n-bit words }
n

J

Therefore, let

wheren=1, 2, .. .,.
Now the largest unit of information which will be of interest

is the data base. The set, [}, of all data bases is defined as

9= dld =(Wl,..., Wk), k=1’2,ono’ aRdWiGWn}

where the word length n is assumed fixed,

Then the general form of the mapping of interest is

i: 9—0

i.e., f maps k-tuples (data bases) to j-tuples,

Thus, we now have the set

s, ={flf:®—-—>©

of all mappings of Q into itself, Sf contains the Minimum Suitable Class

of Operations. To determine the desired subset of Sf further restrictions

must be developed.
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Since suitability is concerned with the processing time of operations,

sy

it seems logical that restrictions to Sf should reflect time in some sensie.
To obtain the desired restrictions, therefore, it is necessary to determine
which characteristics of the five basic associative instructions make

them "more suitable", with respect to processing time, for a Fractional-~

Size Associative Memory.

sy

.
. o
LR

Processing time is composed of two parts, naraely, data movement
time (e.g., loading and unloading of data) and execution time (i.e., the
4 ume required to execute instructions). In an associative memory the
time required to load or unload one datum is generally equivalent to
1 the time required to execute an assor :ative search instruction, such as
MAX, Therefore, it is desirable to load and unload the data as few
times as is possible. In Appendix B it is shown that the basic associative
operations can be implemented on a Fractional-Size Associative Memory
without loading any datum more than once, i,e., no reloading of data
H} is required, Thus, one restriction on the members of the Minimum
Suitable Class should be that they each have an implementation such

that only a single pass through the data is required to compute the

T S
AR PR S T

output, In the next section such a restriction is discussed in terms of

the familiar concept of causauity.

i £ s
i et v
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The execution time required for some implementation,@ , of an
operation f is governed by two factors., First is the time required to

execute the implementation (or program) on the data in a given associative
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memory. Second is the numbers of times the ﬂj must be repeated to
process the data base of interest Thus, both of these quantitles must
be bounded in some manner. In the preceedmg paragraph it was pointed
out thal:ﬁf should not require any data to be reloaded. '_ However; no
constraints were placed on how many data could be retained in the memory
between applications of‘Vo. For instance; if ﬁf allows unly one new datum
to be brought in between each application of f), then it is, in some sensel,
"less suitable' than if it bfought all new data in after each application,
In Appendix B it is demonstrated that all of the five basic associative
operations have implementations sucl{ that no more than one datum is
retained between each application of the respective implementations.,
This characteristic of the five basic associative operations should also
be reflected in a rec’.-iction on the members of the Minimum éultﬂble
Class. This is also discussed in the next section,

In terms of execution time‘the important fact to be noticed about
the five basic assoc: .ive operations is the following, Each of these
five operations, f, has an implementation %f’ such that the execution -
2 . . . Lo 1
of a single application of f? is proportional to -1 t (ﬂcm)

time

where t/( (ff’ ) is the time to execute 'Pf , Which is the fastest
cm ’ cm
implementation of f using a conventional memory and M is thc number of

1In the sense that ﬁ would be applied more times in the first

instances than in the second instance. '

2See Appendix B
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H

. registers in the associative memory. Again, this type of pcocessing

time relationship is reflected in a constraint on the members of the

Minimum Suitable Class, which will be discussed below,

4,3 Formalization of Physical Constraints

- In the previous section the characteristics of the basic associative
operations were discussed. In this section these characteristics will

be used to develop the definition of the Minimum Suitable Class of

Operations., The discussion w1l start at the hardware level and progress

tozthe level of mappings.

In Figure 5 the hardware corstraints discusseu previously are
represented. The associative memory consists of M words, M-1 words
of data are read into the memory, processed, and some results may be
printed out as M words or fewer. The input and output processes are
represented as one-was; tapes to denote the no-reloading-of-data constraint.

The single word shown separated from the rest of the words

represents the capability of retaining one word of information to characterize

data previously processed. The one word of information may also be
referred to as the "'state' of the computation., Since the word has n bits
the computation may be in any of 2" states at any given instance, Figure 5
illustrates a physical realization of the first two constraints diccussed

earlier. Now it remains to characterize these constraints in terms of

the mapping :@ — D'.

To begin the characterization of these constraints it is first noted

that the use of a Fractional-Size Associative Memory requires that the
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data base, deg, must be processed in pages, PysPys oo sPys of

M-1 words. This fact will ke acknowledged by writing d = PyPy---B,s
where PyPye - - Py is the concatenation of the individual pages. Note
that by representing d in this fashion a time structure has been placed on
the pages by the corresponding indices. Page Py is processed first, page
P, is processed second, and so forth, This is the type of time structure
and page-wise orientation of data that is present in the real situations
which are of interest. In the sequel these facts will be kept in mind

by writing, with some slight abuse of notation, f(d) = f(plpz. ..pk), where
the pi's all have the same number of words.

Just as a time structure exists on the input so does one exist on the
output. In terms of Figure 5, a page, Pys of input is read, and an output
Y4 is produced; a page p2 is read and Vo is produced, etc. When all of
the input, PyeeeBys has been produced, then the output tape will
contain YooV The time structure present here must also be reflected
in the mapping f. This will be accomplished by constraining f to have

the following characteristics.

fp) = v, fg(y;) < M

f(ppy) =¥y, =1lp))y, f8(5) < M

f(pye..py) =vqe--¥y = HPg--om 1)y, 28BS M
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where fg(yi)isﬂxelengﬂlofyi, i.e., the number of words Jf ouiput. The
length constraint reflects the fact thai the memory has M words, and the
output is contained in these words when the computations are finished,

By introducing this time structure on d and on f(d) as shown above,
f has been constrained to be a cansal mapping, i.e., the outpntylyz...yi
is deperdent only on pl,pz,..., p;- In addition, the sequential output
behavior expected of the :nodel in Figure 5 has been captured. This
guarantees that an implementation for f exists which does not require any
reloading of data.

The above restriction guarantees that f is a causal mapping and
does not require more than M words out at a time., This means that a
state-oriented procedure for realizing f can be derivedl, although an
infinite number of states may be required. To illustrate this, first

define the mapping rl; ("right end" mapping), r;: —0 , such that

r; (f(py...nB)) = ]"(f(pl...pk) V) =U @

where U, Be D andk =0,1,2,3,...

With the aid of the mapping r;, the partition LA of is defined as

follows
7

1
(pl..opi) ~ (pi o'op's) H r]!.f (pl...piB) = r'sf (pi...p'sB)

forallBin@

1This is a classic problem in automata theory. See, for example,
[ 8] , page 344.




This partition is ti;2 basis of forming the Nerode machine [ 8] in
classical sequential mach:ze theory, and it is well known that the numier
of states required by the Nerode machine which realizes f is equal to
the number of equivalenc.> classes (blocks) in T In other words, if the
partitionrfhas R blocks then the Nerode machine which realizes f has
R states.

Now recall that the machine in Figure 6 was constrained to hold
the state of the computation in a single n-bit word, i.e., only 2" states
are allowed. It is clear, therefore, that the type of functions, f, that
are of interest are those which can be realized by a 2" state Nerode
machine. Alternatively, the partition T of @ must have no more than
2" equivalence classes, or blocks. This constraint along with the
causality and length constraints of equations (1) are sufficient to allow
the machine of Figure 5 to compute f. Figure 6 gives some insight
to the behavior of this machine as a function of time. At time 1 the
page p; is read into the machine and the output is f(pl) =¥;- At time
2 the input is p2 and the output is Vo On the output tape is the
sequence y,y, = f(plpz) as it should be. Similarly, at time 3, Py is the
input, and Vs is the output. The output tape then contains ylyzy3 = f(p1p2p3).
This example illustrates only the output behavior of the machine and
not the state behavior, However, it is sufficient to allow consideration

of the following situation. Suppose at time 1 the machine reads Py from

the input tape and writes y, on the output tape. At time 2 the input is
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P, and, on the basis of this new input, the machine decides that the
output tape should readyz, not y,¥,. The machine has "changed its
mind”, so to speak, anddecidedthatyl is not to be par: of the output,
The output tape moves in one direction only, so the previous ouiput,

Yy camnot be erased. The only solution is to put out some special
symbol, e, which means "disregard previous outpat™, followed by Yo
This sit:ation is depicted in Figure 7. This type of behavior by the
machine will be shovu to be very useful. Unfortunately, the constraints
placed on f, above, are too restrictive to allow such behavior since,

in Figure 7, f(p;p,) = 5, # 1‘p)y,. Therefore, the constraints will be
altered slightly as follows. The function to be constrained will be denoted
as g (g: Q‘ -9{}) to avoid confusion with f, above. Since the constraint
on the behavior of g is impsrtant below, it will be formalized in a

definition,

Definition A function g is behavior-uly suitable or b-suitable if

gp,) = vy gly,) < M
g(py)y,, ¢ .
- gly,) < M

8PPy =(otherwise 2 3)
Vo fglyy) < M

g(pl. .o pk) = ( otherwise

T 4
Vi fglyy) < M
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This constraint is satisfied for any function, g, for which

( yia . oyk
or
y2. L] oyk

{ or

g@---B) =

Lyk

Clearly, f, from above, satisfies this constraint. However, the behavior
illustrated in Figuge 8 is also acceptable now. For instance, if
g(pl. . .pk) = Vpo then at time k the machine merely puts ey) on the
output tape., This recall, means to disregard all output in the past,
i.e., the desired result is the output generated after the symbol e,
namely /R

Given this new, weaker constraint it is still necessary to impose
the cardinality constraint on the partition of g. A new '"right end"
operator Ty must be defined, however, because of new constraint

above. Therefore, define r, : @ —_— gas follows

u if g (py...p.B) = g(p;...H) U
rk(g(pl... pkB)) = otherwise (4)
u' if g(pl...pkB) = u'
Now the partition ”g can be defined similarly to Tes using r, rather

k

!
than rk.

ﬂg ! ] 1 ?
Pye«s Py pye-+ Py <——>rkg(p1...pkB) -rsg(pl...pSB)
VBef)
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as with 7, the number of blocks in 7 g must be no greater than Zn This

f’
guarantees that a realization of g exists which has a suitable number of

states. This is formalized as follows,

Definition A function, g, is state suitable or s-suitable

if the cardinality of 7, is no greater than 2",

It is worthwhile here to mention the dependence of the constraints
of g on M, the associative memory size, and on n, the word length.
It is clear that functions exist which will satisfy the constraints for
some particular values of M, n but not for others, For instance, the
partition of D depends on M but not on n, However, the cardinality
constraint on the partition is a function of n, Therefore, a great
enough reduction in n can make almost any function unsatisfactory,

Two of the three physical constraints discussed in the previous
section have now been formalized as constraints on mappings, The
third constraint, which directly involves the execution time of an
implementation of some operation, will now be treated as follows, It
was stated earlier that each of the five basic associative operations
had an implementation such that t(v(f)am) ~ 'M—IZ'T t (ff’cm). Therefore,

this fact will be used as an additional constraint on g, This is formalized

by the following definition,

Definition An implementation of g, tpg , is t-suitable if
am
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where B is some finite constant, and M is the size of the associative
memory in words. This merely says that, as the page size increases,
the execution time for the implementation ﬂg grows at least a power

am
of M more slowly than does the conventional memory implementation.

4.4 Definition of the Minimum Suitable Class

From the results in the previous section the Minimum Suitable
Class can now be defined. Recall that this class is to contain those
operations which are best suited to Fra~tional-Size Associative

Memories,

Definition A function, g, is a member of the Minimum
Suitable Class if

1. g is b-suitable

2. g is s-suitable

3. There exists an implementation of g, 6;’ such that f; is

t-suitable.

As an exercise it will now be demonstrated that the operations for
MAX, and LESS THAN me =t these conditions, First, consider the
operation for LESS THAN, denoted as '¢t". The state at any given
time is arbitrary, since no information about past data is required to
process future data, Therefore, ¢t is trivially s-svitable since the

state need never be changed. In terms of vehaviur ¢t can be represented as
2 (pl. . °pk) = ft (pl) ot (p2). i 4 (pk)

= .Qt(pl. . .pk_l) yk
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Thus, ft is b-suitable, and in Appendix B an implementation ﬂt is
preseated which demonstrates £t to be t-suitable, Therefore, as was
already kmown, ft is 2 member of the Minimum Suitable Class.

Now consider the operation for MAX, denoted "max"”, For this
operation 2 state value is required. In particular, to process future
data correctly it is necessary to know the maximum value encountered
in data already processed. This value may be called the state of the
computation., Since this value is obtained as data it is clear that it will
alway s fit intc one word of memory., Thus, no more than 2" possible
states exist. Thus, max is s-suitable. To show that max is b-suitable

consider the following,
max (pl.. .pk) = max (max(pl. . ‘pk-l)pk)

Here the need for the special symbol "e" for the machine can be seen
and, consequently, the need for the mapping g rather than f. The past
output, max(pl.. . pk-l) (which is also the state of the computation),
becomes incorrect whenever a larger value is found on P and, even if
no ’arger value is found, a redundant value would be placed on the output
tape. Therefore, when a page is read in, say p,, the output s
e(max(max(pl. . 'pk-l) pk)). Since this value is always a sing.2 word

the length constraint is satisfied and, thus, max is b-suitable, Again,
Appendix B contains an implementation Pm ax which shows that max is
t-suitable. Therefore, all three conditions of membership for the

Minimum Suitable Class of Operations have been met.

[ R el
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5.0 Example Members of the Minimum Suitable Class

In this section two commonly used operations are congidered, It

)
e
4
>

is shown that these operaticons are members of the Minimum Suitable

Sardteribon i

Class of Operations,

; 5.1 Example One (Identification)

The first operation which will be considered is known by various
- names, such as identification, classification, grouping, etc. The

specific operation of concern for this example is the following. There

—“ are g group specifications (Figure 8). Each specification consists of
i a range of values for each of n parameters, Each datum in the data
. base has n+ 1 fields, The first n fields contain parameter values,

and the n + lst field is used to hold a code word which designates to
' which group the datum belongs. A datum is said to belong to a particular
3 group of the value of each of its n parameters falls within the range
of values allowed for that parameter by that group. For example, the
¥ datum shown in Figure 9 can be put into group 2 since each parameter

value falls within the range specified for that parameter for group 2,

It will now be demonstrated that identification is a member of the
Minimum Suitable Class of Operations, The operation will be devoted

by "ident,". Note that the only result of applying ident is to place

o s

oseanalls

the proper code word in the n + ISt field of each data word, This

is done on the basis of the values of the fields of that datum, only,

St ae:‘:r;,m‘- DRI
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Thus, the operation may be written as

=
¥4
o
3
%
<
Ry
s
e
-

ident (py...H) = ident (p,...p, ) ident(p,)

et

The length constraint for behavioral suitability is satisfied since the

YO Aty R

same data goes out as was read in, except for the code word. Thus,

ident is b-suitable. Also, as stated above the code word for each

e PG WLy A

datum depends only on the value of the fields of that datum, so no
; information about data previously processed is required. Therefore,
no state information is kept and the operation is s-suitable.

To show that ident is t-suitable requires deeper consideration
of the operation, This involves some estimate of the execution time
required by ident on both associative and conventional memories,
as a function of M, Several assumptions will be made in the rrocess
of obtaining this estimate. The general attitude taken is to make
assumptions which favor the conventional memory over the associative

memory. The estimate for the conventional memory will be obtained

e

first.

5.1.1 Conventional Jfemory Execution Time Estimate

; For the conventional memory time estimate it will be assumed that
the data structures of Figure 10 are being used. The data to be identified
are stored in a simple linear sequence of words, as are the group
definitions, The group definitions, however, are assumed to be ordered

on the value of R This will allow some modified form of a binary

B s £ A L e

t
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gearch to be performed in order to find those group definitions which
include the field 1 value of a given datum,

The procedure will be to first find those definitions whose range
for field 1 values (ail’bil) includes the value of field 1 for that datum, ¢,

under consideration. The next n-1 field values of £ are then compared to the

Bk g AR PR R B A W’?W’““’memm

appropriate ranges of these selected definitions. That group specification
for which all ranges include the corresponding field values of £ is
defined tc be the group to which £ belongs. The code for this group is
placed in field n + 1 of £. The process is then repeated for each of the

' ; other data in the data base.

| Since the time to execute an algorithm such as that just discussed
is dependent upon the speed of the particular machine used, an indicator
of this time will be used, instead. The indicator is the number of
compare instructions executed. Two compare instructions are needed
for each step in the binary search and two compares are needed to check
each of the n-1 fields remaining, It is well known that the binary search
will require fogzg probes to search an ordered list of g elements, Thus,

2 ﬂogzg compares are required for the first parameter,

en oy e e g
syt i o z

Since it is not known, in general, how many groups may be selected
by this binary search, it is conservatively assumed that only one group
is selected, Thus, only 2(n-1) additional compares will be required
(to check the remaining n-1 fields). The total number of comparisons

is, therefore, [ 2!20g2g +2(n-1)]« M, Itis ciear that, for M large with

respect to n and g, the number of coraparisons is proportional to M.
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5.1.2 Time Estimate For Processing One Page of Data in Fractional-

Size Associative Memory

An associative memory such as that édescribed in Section 2.3 can
identify each datum in a page (m-1 words) of memory as follow:;.l
First, perform a GREATER THAN and a LESS THAN operation using
as comparands the 251, and b11 values for group 1. This will find all
those data whose first parameter value lies within the range of values
acceptable by group 1. These data will be indicated by the corresponding
bits remaining “1"'s in the response register (See Section 2,3) while
other data have their associated bits set to a zero, Now these same
two instructions are repeated, but values ) 9 b12 are used as comparands
this time. This step eliminates those data whose first parameter values
are acceptable but whose second parameter values are not. The associated
response register bits for these data are set to zero,

This prccess is repeated for the remaining parameter value ranges
for group 1, When this process has been completed, those data for which
the associated response registers bit is a ""1" are marked as members
of group 1. The entire process is then repeated for group 2, group 3,
ceey STOUD &,

This process is clearly independent of M. The execution time is
proportional to the number of GREATER THAN and LESS THAN instructions

which are executed. In this example 2ng such instructions are required,

1
Assume the response register has been set to all '""1's" before

processing begins.
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Therefore, the execution time is proportional to ng, which is a fixed

constant for a given problem.

5.1.3 Comparison of Time Estimates

The time estimates above indicate chat the execution time, Te,
for identification is of the form 'l‘e1 = KIM for conventional memory
and of the form Te2 = Kz for associative memroy, where KI,K2 are
constants with respect to M. Thus, it can now tc stated that
identification is t-suitable, since

K2 Te1

- - B
T "k ™ - W™
as required by the definition of time suitability. 1 It has now been shown

that the identification operation meets the three requirements for

membership in the Minimum Suitable Class of Operations,

5.2 Example Two - (Index Table Look-up)

The situation of interest for this example is depicted in Figure 11,
There is a large data base which contains information to be retrieved
upon request. This retrieval is accomplished with the aid of the
index table and the associative memory. The index table is a directory,
each entry of which is a sequence of descriptors the last one of which
is an address. The address is the location in the data base of the

information described by the descriptors, A retrieval request is

1 . ‘e N AT Tk o B
Clearly, this satisfies the definition of t-suitability since <

B
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presented as a list of descriptors, Using the associative memory this
list of descriptors is compared against those in the directory. When
a match is found, the address is used to retrieve the desired information,
This operation of mapp’'ng the index table and list of descriptors to an
address will be denoted by "Ix" in the seqrel. This operation is extremely
important because of the almost universal need for data retrieval of the
general type described above. It will now be shown that Ix is a member
of the Minimum Suitable Class and, therefore, is suitable to a Fractional-
Size Associative Memory.

Clearly, the index table, together with the input descriptors, is
an element of the set ) described earlier. Also, the output descriptor
is an element of f). Therefore, Ix is an operator on B, I - b— 9

In the discussion above it was stated that the process of indexing
is basically a comparison between the list of input descriptors and the
individual entries in the index table, This comparison between the input
list and any given entry is independent of any other entries. From this,
it should be clear that any collection of the entries in the index table
may be processed in an associative memory independently of the

remainder of the table. This is signified as follows,
IX(pl’ eos ’pk) = IX (pl) IX (pz)o o Ix(pk)
The operation IX is, therefore, b-suitable, Ix is also s-suitable since,

as in the previous example, no information need be kept about data

previously processed,
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It can also be shown in a2 manner similar to that of the previous

example that Ix is t-suitable. The details will not be presented here
since they would add little information and are lengthy. The operation

Ix has now been shown to be 2 member of the Minimum Suitable Class.

6.0 Summary

In this report the prcblem of determining which data processing
operations can be efficiently performed on Fractional-Size Associative
Memories has been studied. The study proceeded in the following
manner,

It was argued that certain operations are better suited to

EALR D AR ey ks e b b

associative memories than are other operations, Therefore, a decision
was made to determine which operations were best suited and, then,
study the common characteristics of those operations, It was then argued
that the associative search operations, i.e., those operations implemented
by the associative search instructions, were the most suitable operations
for Fractional-Size Associative Memories, Five operations which
encompass the associative search capabilities of alinost all associative
memories were then chosen for detailed study. The results of this

study was a characterization of these operations in functional terms,

This characterization was used to define the Minimum Suitable Class

of Operations, This class of operations is claimed to contain those
operations which are most suitable for implementation on a Fractional-

Size Associative Memory.
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APPENDIX A

Detaiis For Motivational Example

In this appendix programs are exhibited for an associative memory
and a conventional memory which implement the operation discussed
in the example of Section 1,1, Various assumptions have been made
to simplify each of these programs. These will be introduced as they
are needed, Recall, the goal sought in the example is to determine
all those numbers in some data base which lie within a given range
of values, i.e., those numbers which are greater than some number,
Al, and less than some number, A2. First the program for the

conventional memory will be presented.

A,1 Conventional Memcry Program

For the conventional memory the following type of algorithm will
be represented by the program below, The values Al and Az will be
held in two registers. The programs starts by testing the first data
word to determine if it is greater than A1. Then, it is tested to
determine if it is less than AZ' If both conditions are satisfied this
datum is marked or moved to a special place. Then this procedure
is repeated on the remaining data words.

After each instruction in the program a number is given to indicate
the estimated number of machine cycles which would be needed to

implement that instruction. These estimates are derived from

characteristics of the IBM 360/65 [ 8].
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Program
Compare A, d 7
branch decision 5
Compare A, d 7
braach decision 5

move or mark data 17 (only if data meets both tests)
branch to start over 6

The number of cycles required to process N data words is, therefore,

TN = 30N + 1C
1
where C is the number of words marked. Now, to cotain the results

of the example of Section 1.1 iei N = 10,000, and C = .IN. Thus,

Ty = 32x 10t cycles.

A.2 Associative Memory Program

The program for the associative memory is almost identical to the

program for the cm;enﬁmal memory except that the associative memory
caa perform many comparisons simultaneously. Therefore, this program

is somewhat less complex than the one for the conventional memory.

Program'
Set Response Register 2 settoalll's
load comparand 6 load Al
GREATER THAN 42 comparison
Load comparand 6 load A.z
LESS THAN 42 comparison

meove accepted words 17/woxrd

1 . o .
The cycle estimates for the associative search operations were taken

from [ 1] . The estimates are based on a 32 bit word. Other cycle times
were estimated to be comparable with those for the conventional memory.
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The number of cycle: required to proce<s one memory load (a page)

of data is 98 + 17/correct word. For the data base this is

TN2 = 98K + 17C

where K is the number of pages of data in the data base, and C is the
number of words accepted by the program, Now, letC = ,1N and

N = 10,000, as for the conventional memory, and obtain
T, = 98K + 1.7x 10% cycles.

Ny
This is the equation plotted in Figure 2 of Section 1.1,

A.3 Memory Cost Estimates

Individual cost estimates were not derived for each type of memory.
Instead, an estimate was made for the relative costs of the two types
of memories, This, of course, is heavily influenced by the type of
technology employed. F;>r the example of Section 1.1 the a cost ratio

of 10:1 (associative: conventional) [ 9] was assumed.
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APPENDIX B

Implementations for the Basi;: Associative Opéraﬁoni
In this appendix implementatiops for thé basic'associati've search’ |
operations of Selction 2,3 are exhibited, These implementations haQe
the characteristics discussed in Section 4 in that théy satfsfy the following
two conditions (hereafter refexlred to as condit@t;ns 1 and 2).
1. When the data base is processed a part (page) at a time, then
no more than one word 'of data may be retained from previous
processing when a new page of data is tx"an;ferred into the
memorjr. This is the one word "state' discussed in Section 4,
2. The execution time re]quired by these implementationg , When
applied to one page of data, is proportional to 'I\IT (t(@ N,
for large M, when t(ﬂ' )' is the execution time requirgg1
for the fast;est implem:xgation of that operatioan on a conventional
memory, ‘ |
The implemen‘ations for an associative memory are presénted in the
form of algorithms, These are analyzed to obtain some insight concerning
the execution time of these algorithms, ’fhen estimates are obtained for
executing the operation using é conventjonal memory, and the two

estimates are compared, ‘ :

B.1 Algorithms and Time Estimates

First the algorithm for the "max" operation will be presented.

0. Preset the "state" of the computation,

51
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1, Load a new page of data into the associative memory.
2. Set response register to all 1's,
3. Execute the MAX instruction,
4, Read new page into memory, saving only the state, In this
case the state is that word containing the maximum value from
the previous page.
5. Repeat steps 2-5 until the data base has been completely
processed.
This algorithm demonstrates that a one word "'state" description is
sufficient to contain the necessary information from one page of data
to the next, Thus, condition 1 is satisfied. It also demonstrates that

the execution timel, for one page of data, is a constant with cespeli

_to the size of the memory,

Now consider how this operation would be implemented in a
conventional memory. The important aspect to be considered is that no
more than two words may take part in a COMPARE operation in the
typical conventional memory type of computer, Thus, the usual method
employed to find the maximum value of a list of words is to compare
two words at 2 time and keep the one larger in value to compare against
tﬁe third word, and so forth, This requires M-1 comparisons to be

performed. Thus, the execution time is proportional to M-1,

1Rfecall that the execution time does not include the time required
to load the memory,




A .

RS by
TP

ok, g R
DA SR

Bk e

2

[
3

,

.
B
3
b
i
,
b

2
2
E:
¥
4
o
4

Sl AN b Lt Ll 2

L L O TR

o Ay o

P T

S TR

From the discussion above it follows that the ratio of the execution

times for implementations of the associative memories and the conventional

memories is
t@ . )
max am = — where Kl is a constant
t (',P'max'cm) M-1
or
: 5 .
t(f max'am’ = M-I ° (pmax'cm)

Condition 2 is, therefore, satisfied.
The discussion for the "min" operation follows the same path as
given above for max. For this reason it will not be presented here.

The "greater than', or 'gt" operation will be discussed next.

GRE LTER THAN, LESS THAN, EXACT MATCH

The algorithm for implementing gt on a Fractional-Size Associative
Memory is the following,

1. Load a new page of data into the memory,

2. Set Response register to all 1's,

3. Execute the GREATER THAN instruction,

4, Move all data for which the corresponding bit in the response

register is a 1 to some special area,

5. Repeat steps 1-4 until data base has been processed.

Two points are immediately evident for this algorithm, First,
no information is retained from one page of data to the next, i,e,, no

state information is required, Thus, condition 1 is satisfied. Second,
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the execution time for processing one page of data is independent of
page size, as was the case for the max operation.

Now consider how this operation would be implemented using a
conventional memory. The value used as a comparand in the associative
memory would be comp: _.ed to each of the M data, Those data whose
value is larger than this comparand value would be marked or moved to
a special location,

This discussion shows that M comparisons would be required
and, therefore, the execution time is proportionul to M. The ratio of

execution time for the associative memory implementation is the following,

t (tP'gt'am) K,
t (#"gt'cm) - M
or K,
t(f"gt.am) = =57 ¢ (.'p'gt.cm)

where K2 is some constant, Thus, condition 2 is satisfied. 7The
discussions for the operations, 'exact match,' and "less than' are
completely similar to that for gt. For this reason they will not be

repeated here.
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